Nanomanufacturing in the Defense Industry

Nanomanufacturing Summit 2009
Sharon Smith, Ph.D.
Lockheed Martin Corporation
May 28, 2009
Lockheed Martin Business Areas

Space Systems

Aeronautics

Information Systems & Global Services

Electronic Systems
Nanotechnology in Lockheed Martin

- Ultra Lightweight Structures
- Smart Structures
- Distributed Sensor Systems
- Modeling and Simulation
- Integrated Platforms

Space Systems

Information Systems and Global Services

Control Algorithms for Missions

Electronic Systems

Aeronautics
Nano-enabled Technologies for Air Force

- Morphing Wings
- Photovoltaic Power
- NanoEnergetic Munitions
- Flat Optics
- Thin Film Batteries
- Superconducting Motor Windings
- Laser Protection
- Quantum Well Infrared Photodetectors
- Directed Energy Weapons
- Multifunctional Coatings

Chart Compliments of Air Force Research Labs
Our Challenge

Research → Development → Application → Deployment
Need to Increase TRL Levels

Levels, Players and Objectives Are All Important in Bringing Materials and Devices to Operational Status
Nanomanufacturing Challenges

- **Technical**
 - Strong link between nano-structure and macro-properties requires high degree of control and consistency in high-volume production
 - Uneven dispersion and agglomeration, which ruins high-performance properties
 - Contaminants in factory-quantity materials
 - Price premium for incremental improvement in properties and performance

- **Economic**
 - Brutal competition and fast-dropping prices
 - Rising volumes and quality

- **Other**
 - Inconsistent supplies from different manufacturers
 - Poor understanding of EHS aspects and lack of regulations
 - Lack of real-time characterization tools

Chart Compliments of Lux Research
Example: Road to Production for Sensors
— A Series of Technical Challenges

- Technology Downselect
- Technology Development
- Military Utility, Incl. Rqts Analyses
- Detailed System Design
- Detailed Platform Integration Design
- Risk Mitigation - Data Collection - Critical Experiments
- M&S Concept Assessment
- Technology Survey
- Concept Maturation
- Technical Feasibility Assessment - System Design - Platform Integration
- Military Utility Concept Maturation (Design & Dvpt.)
- Accelerated Acquisition Production
- TacHELF Program

Prototype Development

- New Modeling techniques and Tools
- Design considerations
 - Low noise floors
 - A large dynamic range
 - Realistic excitation requirements
 - Mechanisms to handle fluctuations in power supplies and static electricity
 - determine and create stable calibration curves
 - acceptable output impedance
 - repeatability, accuracy, precision, bandwidth and reliability

Device Characterization and I/F Development

- New metrology tools and processes
 - Identify new parameters and tools to measure them
 - Identify and measure subsurface defects
 - Establish international standards
- Interface to micro, meso, and macro systems

Production

- New metrology tools and processes
- Packaging
- Scale-up considerations
- Manufacturing costs
- Automation, ideally with self calibration and adjustment
- Handling and environmental
- Radiation Effects
- Failure Modes
Nanomanufacturing Process Needs

- Fabrication Techniques
- Embedded Sensors
- Automation
- Remote Manufacturing
- Automation with Self-calibration and Adjustment
- International Standards
- Calibration Tools Nano-characterization
- Identification of New Measurement Parameters
- Modeling and Simulation (M&S) Tools
- Whole System Scale-up
- Rapid Characterization of 3D structures
- Interfaces to Micro and Macro
- Automatic Comparison to M&S Data
- Accurate Modeling at nm scale
- Nanostructures into Devices / systems
- Metrology

Economics
- Cost
- EHS
- High Throughput
MEL at a Glance

Mission: MEL promotes **innovation** and the **competitiveness** of U.S. manufacturing through measurement science, measurement services, and critical **technical contributions to standards**

Divisions
- Precision Engineering (PED)
- Manufacturing Metrology (MMD)
- Intelligent Systems (ISD)
- Manufacturing Systems Integration (MSID)
- Fabrication Technology (FTD)

Measurement Service Areas
- Length, Diameter and Roundness
- Complex Dimensional Standards
- Optical Reference Plane Standards
- Angular Measurements, Surface Texture, Laser Frequency/Wavelength and Ranging, Mass Standards, Force Vibration, Acoustics

Funding
- $50.4 M annual budget
 - $37.0 M NIST appropriations
 - $ 8.7 M Other Agency/External R&D
 - $ 4.7 M Calibration Service Fees/Reimbursable

Staffing
- 174 NIST Staff
- 98 Guest Researchers
- 4 NRC Postdoctoral Researchers
Manufacturing Engineering Laboratory (MEL)

- Current Nanotechnology/Nanomanufacturing Programs
 - Precision Engineering Division
 - Nanomanufacturing Metrology Program
 - Next-Generation Nanometrology Program
 - Manufacturing Metrology Division
 - Mechanical Metrology Program
 - Manufacturing Systems Integration Division
 - AFM Probe Modeling
 - Intelligent Systems Division
 - High precision piezo stages
 - MEMS devices
DoE Industrial Technologies Program (ITP): Mission

Improve our nation’s energy security, climate, environment, and economic competitiveness by transforming the way U.S. industry uses energy

Reducing U.S. industrial energy intensity is essential to achieving national energy and carbon goals

| Source: DOE Energy Information Administration, 2006 |

| Source: DOE Energy Information Administration, 2006 |
Help transform nanoscience into industrial processes and products

Focus:

- **Enabling Processes for Nanomaterials Production**: Improve reliability and scale up nanomaterials production processes
- **Nanomaterials Utilization in Industrial Processes**: Scale up manufacturing processes for utilization of nanomaterials in energy-related products

Top Priorities for Energy Efficiency (based on Lux analysis)

- Batteries and supercapacitors
- Light weight nanocomposites
- Nanocoatings/nanocomposites for thermal management
- Catalysts for chemical, industrial and automotive applications
- Tribological nanocoatings
- Solid state lighting (LED)
- Solar
- Nanomanufacturing research/commercialization center

Chart Compliments of DoE
Critical challenges for nanomanufacturing include the following:

- **Dispersion**: Nanoparticles must be thoroughly and evenly dispersed within a matrix (e.g., film, coating, or resin), as clumping may make them lose their unique properties.

- **Contamination**: Stray molecules of other materials must be prevented from adversely affecting nanomaterial properties, which are highly sensitive to atomic and molecular interactions.

- **Consistency**: The desired properties of nanomaterials must be consistently achieved in mass production.

- **Environmental, Health, and Safety protocols**: The risk profiles of nanotechnology require further study and clarification.

ITP’s Nanomanufacturing Program activities focus on the following objectives:

- Develop low-cost manufacturing processes to expand near-term commercial use of innovative nanomaterials in
 - Industrial processing
 - Energy-saving and energy-producing products

- Develop technologies to enable expanded use of nanomaterials
 - Directly as a material to enhance material performance
 - Indirectly as an intermediate device (e.g., nanosensors for thermal management)
Questions

Tin Whisker Photo courtesy of Peter Bush, SUNY at Buffalo

“Think Big, Start Small, Scale Rapidly”