Zone-Plate Array Lithography: Enabling Nanotechnology from Research through Production

Michael E Walsh, Feng Zhang, Rajesh Menon, Henry I Smith
LumArray Inc., 15 Ward St. Somerville MA, 02143

The authors wish to thank DARPA, US Army, US Navy, and the National Science Foundation for sponsoring this work.
Was Dali painting with electrons?

Salvador Dali, *The Disintegration of the Persistence of Memory*, 1954
Photons Vs. Electrons

Long Wavelength
 Poor DOF
 Resolution Limit (???)

Short Wavelength
 High resolution
 Depth of focus
Photons Vs. Electrons

Long Wavelength

- Poor DOF
- Resolution Limit (???)

- Fast & Cheap
 - Low Photon Energy
 - No limit to photon density
 - Ambient atmosphere
 - Low-cost optics
 - Photons unperturbed by fields
 - Multi-beam is easy

Short Wavelength

- High resolution
- Depth of focus

But....

- Very Challenging Engineering

- Shot Noise in exposure dose
- Vacum, Slow thermal stabilization
- Deflection by ALL electric & magnetic fields!!!
 - beam current
 - substrate charging
 - column charging
 - scanning stages

Nanomanufacturing Summit 2009
Next Generation of What?

Key Metric not bleeding edge performance, but flexibility, cost, ease-of-use. Access.

- Research
- Defense
- Biotech (tissue scaffolds microarrays)
- Photonics, CGH
- Photomasks, inverse litho

ZPAL lowers barriers to entry for high-resolution lithography.
Barriers to Entry
Barriers to Entry

Complexity
- Chemically Amplified Resist
- Excimer Lasers
- Tool Size, Footprint
- Vacuum
- Proximity Effects

Cost
- Money & Time

Flexibility
- Non-Manhattan Geometries
- Large-area Devices

Inspection
State-of-the-art

Electron Beam

Laser Pattern Generator
ZP-150A Alpha Tool

Affordable, high-throughput high-resolution patterning emphasizing flexibility and ease of use for research, prototyping and low-volume manufacturing.

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Feature Size</td>
<td>150nm Dense, 120nm Isolated</td>
</tr>
<tr>
<td>Numerical Aperture:</td>
<td>NA=0.85</td>
</tr>
<tr>
<td>Parallel Beams:</td>
<td>1000</td>
</tr>
<tr>
<td>Writing Speed:</td>
<td>1.7mm²/sec (@0.85 NA)</td>
</tr>
<tr>
<td></td>
<td>~1hr per Ø100mm wafer,</td>
</tr>
<tr>
<td></td>
<td>~2hrs per Ø150mm wafer</td>
</tr>
<tr>
<td>Design Grid:</td>
<td>1nm</td>
</tr>
<tr>
<td>Positioning Resolution:</td>
<td>1.2nm</td>
</tr>
<tr>
<td>Maximum Pattern Area</td>
<td>150mm x 150mm</td>
</tr>
<tr>
<td>Overlay</td>
<td><20nm</td>
</tr>
<tr>
<td>Field Size</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Wavelength:</td>
<td>405nm (I-line, G-line compatible)</td>
</tr>
<tr>
<td>Minienvironment:</td>
<td>ISO Class 5</td>
</tr>
<tr>
<td>Pattern Layout:</td>
<td>GDS II</td>
</tr>
<tr>
<td>Optimization:</td>
<td>MaskPlus PEC software</td>
</tr>
<tr>
<td>Tool Size:</td>
<td>35” x 53” x 61”</td>
</tr>
</tbody>
</table>

Specifications
Examples of ZPAL Patterns

- \(k_1 = 0.38 \)
- \(k_1 = 0.32 \)

180nm
150nm

Prototype
MRAM
memory

NA = 0.9

190 nm

Array of contact holes

Optical
Ring
Resonator

CD=230nm

Nanomanufacturing Summit 2009
Zone Plate: A Simple Diffractive Lens

Why diffractive optics?
- Abberation-free on-axis.
- High-NA at low cost.
- Fabricated with planar process.
- Focus uniformity across array.
- Wavefront engineering.

Simple Diffraction:
\[
\sin(\theta) = \frac{\lambda}{p}
\]

Incident Radiation

Zone Plate

\[
\text{NA} = 0.85 \\
\lambda = 400\text{nm}
\]

FWHM = 262nm

SPIE Advanced Lithography 2009
Zone-Plate-Array Lithography

Arbitrary patterns in a dot-matrix fashion as substrates are scanned beneath a fixed array of diffractive microlenses known as zone-plates.

Beamlets individually turned on and off with micromechanics.

Each ZP focuses radiation to a spot.
ZP-150A System Overview

Spatial Light Modulator
- Silicon Light Machines Grating Light Valve, 1088 Pixels, 290 kHz, 8-bit grayscale.

Data Delivery Electronics
- Custom FPGA design.
- Synchronizes data with motion.
- Position-clocked laser trigger.

Optics
- 405nm GaN Laser.
- Beam Mapped to GLV.
- GLV mapped to ZPA.

Data Preparation
- GDSII Pattern.
- PEC & Fracturing.
- Optimized bitmap.
- ~4 Tb / 150mm wafer.

Precision Metrology
- Direct ZPA-Wafer Measurement minimizes Abbe error, drift.
- 2D Grid Encoder, min res 0.3nm.
- 3-5nm repeatability, 50nm global.
- 1nm position @ 20MHz.

Scanning Air Bearing & Position Control System
- 6" x6" Hi-res travel
- ~3nm RMS Error
- 20mm/sec velocity

ZPA Fabrication
- e-beam lithography
- HSQ on Fused Silica
- 1000 lens monolithic array
- 0.85NA, ~135μm diameter

ISPI Gapping & Overlay
- Direct Measurement of ZPA to Wafer Distance.
- Overlay Detection <1nm
Design for Accuracy

<table>
<thead>
<tr>
<th>Design</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Lens Array</td>
<td>- Accurate Stitching</td>
</tr>
<tr>
<td>Monolithic zone-plate array fixes relative positions of all beams on wafer.</td>
<td>- Loose Tolerances for beams to ZPA.</td>
</tr>
<tr>
<td></td>
<td>- Location of beams on wafer determined only by stage position relative to ZPA.</td>
</tr>
<tr>
<td>Direct Metrology</td>
<td>- Directly measures ZPA relative to wafer, not to machine frame</td>
</tr>
<tr>
<td>ZPA, wafer chuck integrated in metrology frame with 2D encoder.</td>
<td>- Reduces Abbe error, simplifies overall system.</td>
</tr>
<tr>
<td></td>
<td>- More robust than laser interferometer</td>
</tr>
<tr>
<td>Position-clocked data</td>
<td>- Only errors normal to scan are printed.</td>
</tr>
<tr>
<td>Timing of exposure determines location of exposed pixels on wafer.</td>
<td>- Position and velocity errors along scan compensated by exposure timing.</td>
</tr>
</tbody>
</table>
Scanning System

Only Cross-Scan error, not along scan, contributes to pattern error

- Custom XY Air Bearing on Granite Base
- 1nm resolution at 20MHz
- 2kHz Control Loop

RMS=2.8nm

Read Head
Wafer Chuck
Air Bearing Stage
Granite
Pattern Optimization

Proprietary software ensures pattern fidelity, CD linearity by optimizing dose level to every pixel. Also corrects illumination inhomogeneity.

Line-Edge Control

Propriety software ensures pattern fidelity, CD linearity by optimizing dose level to every pixel. Also corrects illumination inhomogeneity.

Proximity-Effect Correction

PEC is computationally easier for ZPAL (incoherent) than coherent imaging (e.g. projection litho).

~200 gray-levels for every exposure pixel allows sub-pixel line control.
Problem of Inspection in Maskless Lithography

Inspection for direct-write litho is a harder problem than for photomasks. Common to ALL maskless schemes.

- No Amortization
- No Repair
- Throughput requirement

Solution: Inspection on the fly = Hard Output

Record in photoresist of dose at all positions on substrate. + Soft Output

Digital record of dose at all positions on substrate.

★ Tool provides additional soft output to enable localization and characterization of errors prior to guide inspection of hard output.

★ Capture of true position of all beams simultaneously with dose information critical for practical implementation.
Interferometric Spatial-Phase Imaging

ISPI encodes position in the spatial-phase disparity between a matched pair of interferometric moiré patterns that magnify displacement.

sub-1 nm via phase-analysis

Benefits of ISPI

Directly measure working distance.
Direct ZPA-wafer overlay.
Dark Field Imaging for High-SNR.
Low-NA (0.06) optics.
Robust through multiple layers.

Absorbance Modulation Optical Lithography (AMOL)

- Annulus at λ_2 in competition with bright spot at λ_1 creates localized sub-wavelength aperture
- Bright spot at λ_1 transmits through aperture exposing photoresist

AMOL Proof-of-Concept

Dichromatic Zone Plate

Absorbance Modulation Photochemistry

$\lambda_1 = 325\text{nm}$

$\lambda_2 = 633\text{nm}$

Focal spot at λ_1

Focal ring at λ_2

1.23 μm

396 nm

426 nm

35nm

42nm

1.70 nm

350nm

Thanks to H.Y. Tsai, Massachusetts Institute of Technology and T. Andrew, Massachusetts Institute of Technology
Zone-Plate Array Lithography (ZPAL): Leveraging new technologies for low-cost, high-performance lithography

Thanks to:
- DARPA
- US Army
- US Navy
- NSF
- MIT NanoStructures Lab
- Sidny Tsai
- Euclid Moon
- Trisha Edwards