

NSF Workshop on Design and Manufacture of Integrated Nanosystems, Arlington, VA March 2-3, 2011

Continuous and scalable manufacturing of macro-, micro- and nanoscale structures using roll-to-roll processing

LLL051216-4 18-sec dev, CV Master, P.A1, 0°

Jim Stasiak Sensing Systems Laboratory Technology Development Operations Engineering Hewlett-Packard Company Corvallis, Oregon

 Mag
 E-Beam
 FWD
 Spot
 Det

 50.0 kX
 3.00 kV
 4.843
 3
 TLD-S

© Copyright 2010 Hewlett-Packard Development Company, L.P.

Outline:

- 1. Motivation
- 2. Developing Imprinting, Embossing and Roll-to-Roll Manufacturing Methods Two examples:
 - Alignment and Registration Tolerant Lithography
 - SERS-based Chemical and Biological Sensors and Sensing Systems
- 3. Digital Fabrication, Printable Electronics, MEMS, and Materials
- 4. Summary

Motivation:

Active research and development programs leveraging multi-scale embossing, novel materials and roll-to-roll processing:

Distortion-tolerant, high performance flexible devices and circuits incorporating metal oxide semiconductor materials.

Integration of digital printing, digital fabrication and "*functional inks*" enabling Smart Packaging and Smart Labels.

Flexible, active matrix, full-color electrophoretic displays and signage.

CeNSE: "Central Nervous System for the Earth" e.g. Chemical and biological sensors based on nanofabricated SERS substrates.

Self-Aligned Imprint Lithography (SAIL)

 Media independence will be a key requirement for integrating electronics, MEMS and microfluidics with Smart Packaging applications.

- Plastics
- •Paper
- •Cardboard
- •Foils
- •...
- ...significant challenges arise due to:
 Substrate distortion (esp. multi
 - masking demands for TFTs, etc.) •Temperature limitations

 - •Surface quality of media
 - Thermal mismatch

By "trading" lithography and masking operations for a series of etching processes, HP Labs's R2R compatible SAIL lithography process solves layer-to-layer alignment and distortion problems for flexible substrates

Fabrication of TFT's using Self-Aligned Imprint Lithography (SAIL)

~40nm lines on 50µ polyimide

4 levels in 0.5 µ step heights

 $t_{pixel} \approx \frac{1}{\mu} (V_G - V_T)$

Multilevel structures on flex at 5m/min

Evolution of R2R Imprint/Emboss Tool Development at HP Labs

Recent accomplishments:

First MCO-based TFTs fabricated using SAIL

Mobility 10-20 cm² V⁻¹ sec⁻¹ On-off ratio 10⁷

Individual SAIL ZTO Transistors on C-Si-thermal oxide gate dielectric

Full SAIL ZTO Transistors on Polyimide

World's first R2R active matrix display

E Ink frontplane and backplane each made with R2R process

SAIL Backplane on flexible substrate pixel detail

Demonstrated at the Flexible Display Conference in Phoenix Arizona, February 2009

"Lab-scale" fabrication of "molecular tweezer" arrays at HP Labs Palo Alto

Figure S2: SEM image showing the silicon mold fabricated using nanoimprint lithography

Figure S4: A low magnification top-view SEM image showing the closed gold fingers coated with 80nm sputtered Au film with a pitch of 500 nm. The inset shows a tilted view of the fingers at high magnification.

Raman Shift (cm⁻¹)

Figure S1: Three different molecules (BPE, 4MP and R6G, from top to bottom) were used in the comparison experiments. Red spectra: Raman spectra collected from the closed-finger samples. Blue spectra: Raman spectra collected from the open-finger samples. The spectral intensity for all three compounds was at least an order of magnitude larger for the closed-finger samples.

Figure S5. Tilted view SEM image showing the closed fingers coated with 80 nm E-beam

evaporated Au film.

HP Corvallis "Plastic Fab" – 1/3 meter wide web proto-manufacturing facility

- Embossing lithography features < $5\mu m$
- Compatibility with SAIL patterning and imprinting processes
- Deposition and plating (both electrolytic and electro-less) of metals and dielectrics
- Laser patterning and template mastering
- Dry etch and plasma treatment

View from Input Reel

HP Corvallis "Plastic Fab" – 1/3 meter wide web proto-manufacturing facility

Fabrication of devices continues to push the boundary of size and speed. High precision production of structures to control a range of capabilities enable products such as micro-fluidic devices and optical devices. With high repeatability and process control, the HP embossing technology provides costeffective methods to pattern flexible substrates such as stainless-steel and PET.

The HP technology includes a range of materials for applications like fluidic management devices or optical filtering or patterning foils.

Mastering Generation

Several methods are available for master stamp generation including cast polymer stamp, laser ablated roller, photo defined features

Coating

Coatings can be applied in a number of ways such as gravure, slot die, or needle dispense

Embossing/Curing The integrated emboss/cure step assures maximum fidelity

SAIL Compatible

Three level Master

Feature	Min	Max	Units
Web Width	100	330	mm
Continuous patterned	10 x 10	100 x	mm
area		150	
# levels	1	4	levels
Depth	0.5	17	μm
Width	4	500	μm
Spacing	0.004	100	mm
Aspect Ratio	0.3	3.6	
Angle between lines	0	60	Degrees
and imprint direction			
Layer to layer overlap	0.5		μm
Transport rate	0.2	0.8	m/minute
Substrate thickness	20	250	μm
Substrates	PET, PEN, SS,		
	ITO/PET, SS/PET		

Stamp: Stamp resin shows every detail of master.

Final embossed feature

Transferring lab-scale imprinting and embossing processes to Corvallis R2R proto line

Starting R2R Scale-up of SERS substrates in Corvallis:

Masters formed via photolithography on glass substrates. (E-beam mastering will reduce feature size)

Embossed features are formed using cured embossing resins

Scale provides a path to high volume and low costs

> Acc.V Spot Magn Det WD Exp 15.0 kV 1.0 150000x TLD 4.8 0

Embossed arrays on Master plastic substrates

Magnified images

Digital Fabrication, Printable Electronics, MEMS, and Materials

The development of new "functional inks" and drop-on-demand (both thermal and piezo inkjet) printing processes – enabling the "printing of things".

Inkjet printing and patterning of quantum dots:

- 2-D barcode printed with two QD "colors"
- Relative peak areas depend on sample position (spot sampled is larger than barcode pixels)
- Sharp, well-resolved peaks allow precise specification of emission wavelength and amplitude to generate covert "signature" (independent of positional information contained in 2-D barcode)

Barcode printed with QDcontaining ink shown under UV (254 nm) illumination

- Ink = Water + humectant + surfactant
- Print System = HP 95 cartridge in DeskJet 6540 TIJ printer
- Quantum Dots = blue- and red-emitting CdSe:ZnS with TOPO ligand
- Media = Low-fluorescence office paper

Summary:

HP's current research and development programs in flexible electronics, flexible displays, chem/bio sensing and other emerging technologies are:

- Leveraging existing and new nanoimprinting, embossing, and roll-to-roll manufacturing investments.
- Driving the development of new R2R-compatible patterning and processing approaches at all length scales (e.g. SAIL).
- Enabling the development of new devices and structures (e.g. flexible circuits and high enhancement factor SERS substrates).
- Providing a new continuous and scalable manufacturing platform for emerging technologies and new businesses.

Acknowledgements:

Mike Delos-Reyes (CRV) Tom Etheridge (CRV) Randy Hoffman (CRV) Tim Koch (CRV) Jeff Mabeck (CRV)

Warren Jackson (HPL) Zhiyong Li (HPL) Carl Taussig (HPL) Stan Williams (HPL)

Peidong Yang (UC Berkeley)

This work was partly supported by DARPA

