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Some key questions
» How can we beat CMOS performance at the nanoscale?
» 3D integration: what overlay precision is needed?
» How much faults can we manage and how?
» Overcome cost trends. New business model for nano ICs?
» Crossing physical domains for additional benefits
>

Putting it all together: vision for nanosystem fabric/platform
e Lower cost, improve performance & power, and scale. Is it possible?



How can we beat CMQS?
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K. Galatsis, et al., “Alternate state variables for emerging nanoelectronic devices,” IEEE transactions
on Nanotechnology, vol. 8, no. 1, 2009

Faster/lower power nanoscale switches often seen as key goal
» But no breakthrough alternative on the horizon

Two possible mindsets we envision to beat CMOS performance
» Integrated fabric mindset assembling devices and interconnect
> New devices implementing complex logic functions vs. switch
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Approach #1: Nanowire grids (NASICs)
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o Depletion mode SEM images: (left) 200nm X 60nm features (PMMA on SOlI)
2.D NASIC fabric i xnwFET on SOI (right) Ti etch-mask for nanowire patterning

Nanoscale Application Specific Integrated Circuits:

Nanowire grid-based but also graphene nanoribbon crossbars

= Integrated assembly of novel circuits: No arbitrary device sizing, placement

= ~30X density adv; Up to 10% defect rate, 30% parameter variation managed

= Experimental NASIC Fabric Prototype at UMass Amherst and UCLA (ongoing)
» Scalable /n-situ, ex-situ and direct patterning of nanowire arrays
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Approach #2: Logic Functions as the device

Vision Spin Wave Logic Functions (SPWEs)
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*Key physical components of a spin-wave based computing fabric

Silicon Substrate

= Implement logic function in one = Leverage collective precession of

step with a single device spins in ferromagnetic materials
» High fan-in, high fan-out, and » Encode information in amplitude
input multiplexing and phase of spin-wave
= A generalized high fan-in multi- > Computation through
value threshold logic interference

» Waveguides for spin propagation

» Magneto-electric (ME) cells for
I/O and amplitude modulation

= Spin Wave Functions

*P, Shabadi et al., “Towards logic functions as the device,” in Nanoscale Architectures (NANOARCH), IEEE/ACM International Symposium on, pp. 11-16, 2010. 6



Benefits/Intuition: (7;3) Parallel Counter Design

Conventional Boolean Logic Threshold Logic ( Few threshold gates, but SPWF (WHFM)
(Highly Complex) individual gates Highly Complex)
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Translates into performance

P. Celinski et al., “Compact parallel (m,n) counters based
on self-timed threshold logic,” Electronics Letters 38, no. 13
(2002): 633-635.
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3D Integration: How much precision needed?
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3D integration and 2D functionalization require considering registration and
overlay precision between process steps

» How much overlay precision is needed and how it impacts yield?

We can mitigate with choices we make: regular design & order of process
» First mask may be ‘offset’ with tolerance since underlying pattern uniform (grid)
» Overlay for subsequent litho-masks precise (30==+5.7nm known — ITRS2009)
» 75% vyield for such overlay at 10 nm nanowire pitch — nanoprocessor design
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What about 3-D integration with CMOS?
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= Requires mixing CMOS design rules with nano
» CMOS lambda design rules for integration with metal stacks (ITRS 2009)
e Determines via size and overhang, metal and nanowire spacing
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N3ASIC Vision ...

CMOS layer

1) Control logic for N°ASIC

Custom metal
2) Other CMOS logic (example Mixed interconnects for

signal etc) routing

Nanowire logic

plane (N°ASICs) Channél

Nanowires

MOSFETs (CMOS
layer)

N3ASIC built on a single SOI substrate with 3D Integration
» Area-distributed interfacing using standard lithographic vias
» Nanowire logic/memory tiles integrated with CMOS
» No special manufacturing constraints beyond bottom nanolayer

SOl substrate

Copyright 2011, C. Andras Moritz
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Cost: Programmable N3ASIC “Fabric/Platform”

Novel Coupling

Gate Regions
CMOS layer Nanowire

1) Control logic for N°ASIC

Custom metal
interconnects for
routing

2) Other CMOS logic (example Mixed
signal etc)

Functional Channel

Engineered Nanowire
Materials
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Y7
/ /" Gate Metal NW
/'// 2nm Control HfO,
//'f' 4nm Trapping SiN,
101 // 2nm Tunnel SiO,
W Channel Si NW
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Nanowire logic
plane (N*ASICs)

Drain Current (A)

Channel
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-4 -3 -2 -1
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pxnWFET- with Chui,
UCLA

MOSFETs (CMOS
layer)

SOl substrate

Uniform with all devices at junctions programmable
Fabric/platform model — game-changing cost reduction potentially
We can program logic and SRAM-like memory on same fabric
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Perhaps it is time for a mindset change: 0.01 defects/cm?2 (CMOS) - not possible
Aggressive multi-level built-in masking
» Error correction masking integrated into physical fabric

Runtime Re-Calibration enabled by Stochastic Resilience Sensors
> Estimate fault rates at runtime, adjust with reconfiguration (inhibition, enhancement, etc)

Copyright 2011, C. Andras Moritz

12



T T LIl T e T =
e rrrn [ 10
e rrrn [ +g 'I'!Elzl"i‘ffus-bl'llosmf}
I P rrrmn I P rrrrn I 11 - | E|
Lo Lo o1 . =N
oo WIRE DRIVEN DELAY 10* [|-m—Drift (v =08
1 L rrrnn 1 Lrrrn 1 [}
1000 F Lo orrnn [ ':"'_'05["‘?"”_-:”
e 1 rrn [ B | —#—Spin Ballistic
o orrrn [ | = |- -CMOS (WIL=S)
o rrnn orrnnn [ | 10
| I e I rrrrrn I 11
& 1 LI | i 1 [ E]] 1 111 o
= GATE DRIVENDELAY tu| 1 111 a
& 100 |
g I P rrrrn I 11 7—""11}2
S [ e I P rrrrn I 11 ]
monm (2004 1o 5}
T T T TTITIT [ =
Ponm  jIoas | [ i .
i (L AL T T 11 1 10
10 LA T 1T 10in
T 11
PRI I EE e v 1 [0 ol O B - N H N o
2Inm (0w 1 (] o
e [ 1 1 L
i S et REIAL R
q M L M o
0 1 1o 10% 10" ) 10°
Length (pm) Interconnect Length (in units of gate pitch)

M. Sellier et al., “Predictive Delay Evaluation on Emerging CMOS Technologies: A Simulation S. Rakheja, A. Naeemi, and J.D. Meindl, “Physical limitations on delay and energy
Framework,” in Quality Electronic Design, 2008. ISQED 2008. 9th International Symposium on, dissipation of interconnects for post-CMOS devices,” in Interconnect Technology
2008, 492-497,10.1109/ISQED.2008.4479784. Conference (IITC), 2010 International, 2010, 1-3, 10.1109/1ITC.2010.5510448.

Spin wave propagation may be inferior to charge transfer by10X

> 45nm minimum width wire delay: ~10ps for 1p length at 45nm CMOS; spin wave
delay: ~100ps/um (Khitun); Another study (Rakheja) also puts CMOS ahead by 10X

Communication may be more efficient in charge domain
Glue logic at low fan-in better maybe in charge-based domain
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= Ultimate vision: fully re-programmable multi-domain nanofabric/platform

» N3P: Hybrid programmable nanowire, spin wave functions, memristor, and CMOS
fabric; further functionalize with photovoltaics, sensing, etc

= Post manufacturing & runtime programming/calibration of hardware
» Shifts chip fabless business model ... similar to software!
» CPU, GPU, other logic, share same platform: LOW COST!

Copyright 2011, C. Andras Moritz 14



Thank you!

Nanoarch 2011 in San Diego, June 8-9
>
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