

g search collaboration

PIONEERS IN Collaborative Research®

NSF-NNI Workshop: Design and Manufacture of Integrated Nanosystems

Future Directions of Nanoelectronic Systems: A Nanomorphic Cell

James Hutchby, Victor Zhirnov and Ralph Cavin Semiconductor Research Corporation

Arlington, Virginia, March 2-3, 2011

Prototypical Example of an Extremely Scaled Microsystem

- **Nanomorphic Cell:** A model system, designed to analyze the physical scaling limits of electronic systems,
- Postulated to be confined within a $10\mu m \times 10\mu m \times 10\mu m$ cube.
- An atomic-level integrated, self-sustaining microsystem with six primary components: <u>computation, communication, energy</u> <u>supply</u>, <u>sensing</u>, and <u>actuation</u>.

Benchmark: Living cell In carbo system

"Microsystems for Bioelectronics: The Nanomorphic Cell", by Victor V. Zhirnov and Ralph K. Cavin (*Elsevier*, 2010)

Electronic Cell

At this scale, we are literally designing with atoms

1. ENERGY IN THE SMALL

Physics behind:

Galvanic &Fuel cells Source:Avogadro's LawRF energy transmission/harvesting:EM theory/Maxwell's equationThermoelectric conversion:Carnot Law (=The Second Law)Nuclear batteriesNuclear batteries

Energy sources candidates

- Electrochemical cell
 - Galvanic cell
 - Fuel cell
 - Integrated Supercapacitors
- Radio-isotope energy sources

Size-energy-power trade-offs

- 'Harvesting' concepts
 - Don't appear to offer benefits compared to the major energy sources
 - Omitted in this discussion

Integrated Micro-scale Power Sources

Choice and scaling limits of micro-batteries

The galvanic cell consumes *atomic fuel* to produce electricity

Example:

What occurs in a electro-chemical cell?

For every 1-2 electrons that flow through the external connection, on the electrolyte side a metal atom must go into solution as a Me⁺ ion

Characteristic reaction time $\tau \sim 10^{-3}$ s

Because the typical chemical bonding energy per electron is \sim eV, the typical emf \sim 1V

$$Li \rightarrow Li^{+} +e^{-}$$

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

$$Cd \rightarrow Cd^{2+} + 2e^{-}$$

$$Fe \rightarrow Fe^{2+} + 2e^{-}$$

$$Pb \rightarrow Pb^{2+} + 2e^{-}$$

$$H_{2}$$

1-2 electrons ~ 0.5-3 Volts

Integrated Micro-scale Power Sources

Choice and scaling limits of micro-batteries

[®] Energetics of an Autonomous Micron-Scale System Drives System Design

2. MINIMAL LOGIC ELEMENT

Scaling limits: The binary switch

Boltzmann-Heisenberg relations

Creating Barrier Asymmetry also requires energy

[®] CMOS scaling on track to obtain physical limits for electron devices

System Level Energetics I: *Reliable Switching*

Computation at Π_{err} =0.5, and hence at $E_b = k_B T \ln 2$ is impossible

In useful computation, $\Pi_{err} <<0.5$, hence barrier height larger than $k_B ln2$ is needed (larger total power consumption)

Question: How Much Larger?

If we assume switches operate independently

System Constraint on Minimum Energy per Bit

[•] Connecting Binary Switches via Wires in 2D (*L>2na, N electrons*)

GRC

For logic operation, a binary switch needs to control at least two other binary switches

Minimum switching energy for connected binary switches

© Operational reliability vs. Number of Electrons

 In interconnects, the number of electrons needs to be sufficient to guarantee successful communication between binary switches

<i>Typical fan out (n</i> =4) <i>for logic</i>	N electrons	Operational reliability
	14	50%
L=8 <i>a</i>	20	75%
	42	99%

We need many electrons for reliable communication

More electrons means more energy... **Roadmap: MPU** Mark Lundstrom/Purdue: N electron Year E_{bit}/k_BT Node gate 5.63E+04 3.76E+04 Why do we still 2.26E+04

Why do we still operate so far above the fundamental limit: Why 10⁵ k_BTln2 and not 3k_BTln2?

We need a significant number of electrons for branched communication between binary switches

$$E \sim N \cdot E_b = N \cdot e \cdot V_{dd}$$

At the limits:

 $E \sim 22 \cdot 1.6 \cdot 10^{-19} \cdot 0.7 = 2.5 \cdot 10^{-18} J = 600 k_B T$

1.87E+04

1.53E+04

1.28E+04

1.08E+04

9.47E+03

5.39E+03

4.66E+03

2.37E+03

2.12E+03

1.07E+03

6.05E+02

PIONEERS IN COLLABORATIVE RESEARCH®

The Quest for a Better Switch

The SRC Nanoelectronics Research Initiative

- 15 nm HV CMOS
- 15 nm LV CMOS
- Excitonic FET
- MTJ Logic Switch
- All Spin Logic
- Graphene PN Junction
- Electronic Ratchet
- Graphene thermal logic
- BDD Architecture
- Nanomagnet logic
- gnrTFET
- InAs TFET
- e-Struct. Modulation Trans
- RAMA

- BiSFET
- RIEFET
- HetTFET
- Spin Wave
- MTJ/STT
- Spin Torque Amplifiers
- Mag Domain Wall Logic
- Graphene spin transport
- MOTT Device
- Spin-Inj Hall Effect
- Few Spin Device

NAND2 Delay vs Energy

A potential Delay-Energy minima exists at approximately 1E-29

Normalized Data

SRC

All 3 metrics responding consistently – energy and area superiority.

3. MINIMAL MEMORY ELEMENT

(Nonvolatile case)

What is the smallest volume of matter needed for memory?

Al Fazio, Intel Fellow (ITRS ERD meeting, April 2010)

[®] Three essential components of a Memory Device

GRC

- Storage element
 - Two-barrier system

- 'Sensor' which reads the state
 - e.g. FET/binary switch
- 'Selector' which allows a memory cell in an array to be addressed

Select line (Word Line)

All three components impact scaling limits for memory devices

 $\frac{\mathbf{E_{bit}} \sim \mathbf{1.3 \ eV} \sim 2 \times 10^{-19} \ \mathbf{J} \sim \mathbf{50 kT}}{\mathbf{N_{max}} = \mathbf{5 \times 10^{13} \ bits}} = \frac{1}{(5a \times 5a \times 7a)} = \frac{1}{175 \ a^3} \sim 10^{16} \ \frac{bit}{cm^3}$

- Sensors are Critical Components for microsystems
- What are scaling limits of the sensors?
 - Size-Sensitivity tradeoffs for different Stimuli?
- Single sensor may be not enough
 - Decision making data management often require pattern sensing and analysis
 - Arrays of Micro- and Nanosensors
 - Multiple Stimuli
 - High-resolution mapping
- Semiconductor Nanowires have a potential for sensor application
 - e.g. large specific surface area

Unifying View on Switches and Sensors

Sensors can be regarded as binary switches, whose barrier is deformed by different stimuli other than charge, e.g. *mechanical, optical, thermal, chemical*

All information devices, both switches and sensors, contain at least one energy barrier, which controls information carriers. The barrier properties, such as height, length, and shape determine the device characteristics

4. COMMUNICATION IN THE SMALL

Scaling of EM transducer (Maxwell)

Energy of communication in a micron-size system (Einstein)

Function	Energy atoms/bit	
Communication	109	
Logic	10	
Memory	1	
Sensing	<10	

Summary: Extreme Microsystems

- Extremely-scaled CMOS technology should support computation and control for the ten micron cube
 - Beyond CMOS devices
 - 3D integration
- Technology issues aside, it appears that a careful atomiclevel trade-off could yield a functional system.
- Micron-scale energy sources are key to extreme microsystems
 - Design space is bounded by the limits of energy sources
- Communication energy/volume expenditures is most costly activity – should therefore maximize "system intelligence"
 - Data compression algorithms
 - Greater system autonomy
- Potential for arrays of nano-scale sensors needs further exploration

Thank you!