

Design & Man of Integrated NanoSystems: Transitioning Nano To Air Force Systems

2 Mar 2010

Rich Vaia
Branch Chief & Research Lead
Nanostructured & Biological Materials Branch
Materials and Manufacturing Directorate
Wright-Patterson AFB OH
Richard.Vaia@wpafb.af.mil

"Nano" Technologies

Nano-Particles & Powders

Nano-Composites & Materials

Nano-Structures & Devices

Design
Manufacturability
ROI
Supply Chain

able new performance paradigms

Challenges: Design & Man of (Nano) Systems

System =
Performance
arises from
designed
interaction(s)
between
constituents

Nano-enabled Systems

Nano Systems

<u>Digitization of the Materials Tetrahedron =</u> <u>Format Knowledge for Designers</u>

Tools for Verification & Validation = Standards, Common Building Blocks

Inter- Material Systems as Networks = Optimization for Performance

- **action**Automated Discovery = Acceleration of Multi Body Formulation
- Man Factory of the Future = Maximizing Specificity and Customization

Challenge: Tools for Verification and Validation

Issues: Control of Units

- Purity
- Distributions
- Standards
- Calibrated in-line monitoring for closed loop manufacturing

Approaches:

- Statistical Analysis of Idealized Limits
 - Novel Fabrication & Assembly Techniques
- Accelerated Spatial Characterization Tools
- Visualization Tools
 - Image Recognition & Machine learning
 - Common Database Expectations

Reversible Clustering & Purification

Park, et al Nano Letters, 2010, DOI: 10.1021/nl100345u

Energy-Filtered TEM and Low-Dose HREM

Drummy et al Chem. Mater. 2011, 23, 907–912 907

Challenge: (Nano)Materials Systems as Networks

Issues: Design the Interaction Between Constituents

- Critical Path
- Critical Defects
- Distributions
- Nonlinearity
- Regulation
- Integration with higher-level systems

Approaches:

- Information Flow = Response & Transport is Processing and Info
 - Graph & Network Theory
 - Path Distributions
- Emergent Phenomena
 - Stability via interaction of non-stable processes
 - Performance
- Regulation of Cellular Processes

Piezo Resistive PNCs

Adv. Material 2010, 22, 3430 2010; PRL 102(11), art no. 116601 Macromolecules, 2008, 8053; Simoes et al, 2010, DOI 10.1166/jnn.2010.1373; G. Forest et al in press

Autonomic Behavior (BZ Hydro-Gels)

Challenge: Automated Guided Discovery

Issues: Uncertainty in exploration of solution space

- Comparable Interactions
- Dynamic response
- Multi-variable input
- Durability
- Sustainment

Approaches:

- In-Situ library generation
 - In-line research rather than process control
 - Objective functions
 - Steepest Descent
 - Machine intelligence
- Bio-discovery (e.g. Phage) evolutionary – selection driven discovery

Goal-seeking AGD

Temperature (°C)

1000

Temperature (°C)

SWNT Nuc

800

Yakobson et al www.pnas.orgcgidoi 10.1073pnas.081194610

Challenge:

Factory of the Future (AF Man Strategic Vision)

Issues: ROI

- Reproducibility
- Risk
- Lot size
- Unique Platform
- ESOH
- Supply Chain

Factory of the Future

- Next gen mfg tech developed with process and cost models
- Lean & agile, lot size insensitivity
- Robotics and next gen automation
- Advanced/ wireless factory C2

Moving Manufacturing Left

- partner with academia and small business on high risk/high payoff opportunities
- Develop tools and methods that promote early consideration of mfg implications during concept development

Cradle To Cradle Digital Thread

- Increase digital density across life-cycle
- Enable increased reusability of materials and components, and optimize impact on the environment

Responsive, Integrated Supply Base

- IB capabilities and risks are known, available, and integrated into product development
- 21st century supply chain mgmt principles
- Capability for rapid formation of global partnerships

Manufacturing Technology Division AFRL/RXM

Summary: Path to Nano-Systems through Digitization of the Materials Tetrahedron

Main technical hurdles preventing us from manufacture of complex nano systems today?

- Truth in advertisement fidelity in technical assessment (hype or reality?)
- Incompatibility & stability issues (enhance v. new platform, environments)
- ROI calculation including Sustainment & Durability
- Computational gaps (ICMSE)
- Manufacturability metrics
- **ESOH** issues

How do we surmount these hurdles?

- Develop Tools for V&V (Near-Far)
- Integration of informatics capabilities (Mid; technical challenges)
- Development of Robust & Integrated Design Tools (Mid-Far)
- Establish pilot development manufacturing capabilities (Near-Mid; limited funding)
- Adoption of new concepts, such as BioPharma (Near; language)
- Quantification of Stability & Duribility
- Technical workforce (Mid-Far)

References and Background

http://www.nano.gov/AFRLNanobooklet.pdf

http://www.dtic.mil/cgi-bin/GetTRDoc? Location=U2&doc=GetTRDoc.pdf&AD=ADA472245

http://ammtiac.alionscience.com/pdf/AMPQ8_2ART03.pdf

http://www.af.mil/information/technologyhorizons.asp

https://www.dodmantech.com/