Perspective on Integration and Nanomanufacturing

Alex Zettl COINS Director

and

Department of Physics, UC Berkeley, Materials Sciences Division, LBNL

Design and Manufacture of Integrated Nanosystems Arlington, VA, March 2, 2011

National Science Foundation

COINS Application Drivers

Personal, Community, and Mobile Monitoring

Exhaust from power plant smokestack

San Bruno Gas Explosion

Rescuers search for survivors after earthquake in Haiti, 2010

40 lb Personal Air Monitoring System

Rapidly Deployable Chemical Detection System Pesticides, explosives, toxicants

Personal Monitoring

Center of Integrated Nanomechanical Systems

Systems Integration Challenges

COINS Sensing System - Board Layout (Top)

History of radio technology

Key developments:

- Theory (EM, quantum mechanics)
- Materials (semiconductors)
- Integration (on-chip architecture)

 $\omega_0 \propto \frac{1}{\tau^2}$

Mechanical Oscillators: Size vs Frequency

Xylophone

Nanocantilevers

10 cm

~1-10µm

ω~1Hz

ω~1,000,000Hz

Diving hoard

Center of Integrated Nanomechanical Systems

Nanotube Cantilever

 $\omega \sim 1 \text{ MHz} - 1 \text{ GHz}$

Ultimate Integration

Entire radio implemented with National Science Fou One nanotube and counterelectrode

All-in-one nanotube radio

hanical Systems

Antenna

Charged tip of nanotube is sensitive to external *E* fields.

National Science Foundation

+

+

+

+

+

Center of Integrated Nanomechanical Systems

All-in-one nanotube radio

Vibrates when radio signal matches resonance frequency.

Tuner

National Science Foundation

+

+

+

+

+

+

+

+

+

+

All-in-one nanotube radio

Transducer/Amplifier

Vibrating tube modulates quantum mechanical field emission current.

 $E_{\rm rad} \sin(\omega_{\rm c} t)$

National Science Foundation

All-in-one nanotube radio

anical Systems

Demodulator

Field emission nonlinearities demodulate radio signal.

National Science Foundation

Radio in Operation

Fidelity of Received Signal

Nanomechanical Sensing

High mass sensitivity

$$M_{\rm min} \propto \sqrt{\frac{M_{\rm eff}}{\omega_0^3 x_c^2 Q}} \propto \sqrt{\frac{L^5}{rQ}}$$

[B. Ilic et al., Nano Lett. 7, 2171 (2007)]

Nanotube Mass Sensor

Single Nanotube Mass Sensor

Challenge– Tyranny of Numbers

Single transistor \rightarrow Fully integrated, manufacturable system

1948 1959 (concept); 1970's (implementation); 2000 Nobel Prize

Single nanodevice \rightarrow Fully integrated, manufacturable system

Demodulation/Amplification

Fowler-Nordheim:

$$I = c_1 A (\gamma E_{ext})^2 \exp\left(-\frac{c_2}{\gamma E_{ext}}\right)$$

Field enhancement perturbation:

 $\gamma(t) = \gamma_0 + \Delta \gamma(t)$

Demodulation:

 $\Delta I(t) = I_0 (1 + \alpha + \alpha^2 / 2) \cdot (\Delta \gamma(t) / \gamma_0)^2;$

$$\alpha = \frac{c_2}{\gamma_0 E_{ext}}$$

Nanotube Mass Sensor

