

Putting Things on Top of Other Things: Assembly of Graphene and Carbon Nanotube Devices by Mechanical Transfer

J. Hone

Columbia University Dept. of Mechanical Engineering Nanoscale Science and Engineering Center

Nanotubes: Crystal Structure

(5,1) SWNT

(n,m) chiral indices uniquely determine nanotube crystal structure

Physical and Electronic Structure

Zero effective mass particles moving with a constant speed v_F

How many different structures?

Identifying the Crystal Structure

Series of optical transitions should provide a unique fingerprint for each nanotube

Suspended Nanotubes for Single-Tube Spectroscopy

Rayleigh Scattering Spectroscopy

Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering Matthew Y. Sfeir, Feng Wang, Limin Huang, Chia-Chin Chuang, J. Hone, Stephen P. O'Brien, Tony F. Heinz, Louis E. Brus Science **306**, 1540-1543 (2004)

TEM Structural Assignment

Nanotube Transfer for Electrical Measurements

X.M.H. Huang, R. Caldwell, M. Huang, S.C. Jun, L. Huang, M. Sfeir, S. O'Brien, J. Hone. Nano Letters 5, 1515-1518 (2005).

Transferred SWNT

3-terminal electrical measurements'

Are metallic tubes metallic?

Explanation: electron-electron interactions cause insulating state at low charge density (Mott insulator). Highly unusual at room T!

> Vikram V. Deshpande, Bhupesh Chandra, Robert Caldwell, Dmitry Novikov, James Hone, and Marc Bockrath, *Science* 323, 106 (2009).

Nanotube Heterojunction: Molecular Scale Quantum Dot

 <u>Bhupesh Chandra</u>, Joydeep Bhattacharjee, Meninder Purewal, Young-Woo Son, Yang Wu, <u>Mingyuan Huang</u>, Hugen Yan, Tony F. Heinz, Philip Kim, Jeffrey. B. Neaton, James Hone, "Molecular-Scale Quantum Dots from Carbon Nanotube Heterojunctions," *Nano Lett.* 9, 1544 12 (2009).

Resistivity of known-chiralty tube (26,11)

Bhupesh Chandra et al, submitted

Evidence for Substrate Effects

Intrinsic and Extrinsic Resistivity

Boron Nitride Substrates for Carbon Electronics

Transport in Carbon Electronics: Substrates are a Problem

Martin, et al, Nature Phys. (2008)

- surface roughness
- charged impurity scattering
- potential disorder $\sim 100 \text{ meV}$
- large hysteresis

Ando (2006); Nomura and MacDonald (2007); Hwang, Adam and Das Sarma (2007)

Hexagonal Boron Nitride

	Band Gap	Dielectric Constant	Optical Phonon Energy
BN	3.6 - 7.1 eV	~4*	>100 meV
SiO2	8.9 eV	3.9	59 meV

*measured in our lab

Graphene/BN transfer

CC.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Nature Nano (2010)

Graphene/BN transfer

21

Raman Spectroscopy

23 Dean et al. Nature Nano. (2010)

Comparison to SiO₂

	$\delta n (cm^{-2})$	n _{max}
SiO ₂	~10 ¹¹	10 ¹³
Suspended	~10 ¹⁰	1.5x10 ¹¹
hBN	4x10 ¹⁰	10 ¹³

- \bullet greatly enhanced mobility on h-BN compared to SiO_2
- CNP peak width reduced by nearly order of magnitude
- virtually no doping even after annealing
- virtually no hysteresis

Integer Quantum Hall Effect

graphene on SiO₂

 $\sigma_{xy} = \frac{4e^2}{h} \left(n + \frac{1}{2} \right)$

see all integer QHE states!

"unconventional" QHE

Integer Quantum Hall Effect

On BN, the degeneracy of the Landau Levels is fully split...

Fractional Quantum Hall

First FQHE on substrate-supported sample, 4-probe measurement Full set of fractions up to 13/3 (only 1/3 seen previously)

C.R. Dean, et al, Submitted

Disorder from Contamination...

Pump oil contamination causes behavior similar to SiO_2 .

- Doping
- Broadening of Dirac peak
- Loss of splitting of IQHE levels

Samples on BN are 'same' as those on SiO_2 , just with less disorder...

High-Performance FETs

8.5 nm BN back gate

Saturating sub-micron FETs...

Capacitance Measurements: Bilayer Graphene

Semiconducting Nanotube on BN

Nanotube transfer technique

Huang et al., Nano Letters 5, 1515 (2006)

AFM image of NT on BN: PMMA residue is problem...

Semiconducting Nanotube on BN

Virtually no hysteresis after annealing in vacuum (450 C) Subthreshold swing S~170 mV/decade (imperfect contacts)

32

Semiconducting Nanotube on BN

 $V_{sat} \sim 2 \times 10^7$ (similar to on SiO₂ see Chen and Fuhrer PRL 2005) ³³

Future: Multilayer Devices e.g. Exciton Condensation

H Min, R. Bestride, J.-J. Su, and A. H. MacDonald, PRB (2008): $T_c \sim 300 \text{ K}$ Kharitinov and Efetov, Semicond. Sci. Technol. (2010): $T_c < 1 \text{ mK}$

Personnel and Funding

<u>Hone group:</u> Cory Dean (with Shepard grp.) Bhupesh Chandra Lei Wang Rob Caldwell

<u>Kim group:</u> Andrea Young Paul Cadden-Zimansky <u>Shepard group:</u> Inanc Meric Sebastian Sorgenfrei Natalia Baklitskaya

Takashi Taniguchi, Kenji Watanabe National Institute for Materials Science, Japan

Funding: NSF (NSEC); DARPA CERA; Intel; Honda